WRITABILITY AND REACHABILITY FOR o-TAPE INFINITE
TIME TURING MACHINES

MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

ABSTRACT. Infinite time Turing machines with tape length o (denoted 7o) were
introduced in |] to strengthen the w-tape machines of Hamkins and Kidder
from []. It is known that for some countable ordinals «, these machines’
properties are quite different from those of the w-tape case.

We answer the main question in [| about the size of the least ordinal ¢
such that not all cells are halting positions of T5 by giving various characteriza-
tions of §. For instance, it is the least ordinal with any of the properties

(a) there is a T,-writable real that is not Ts-writable for some a < 9,
(b) ¢ is uncountable in Ly, or
(c) ¢ is a regular cardinal in Ly,
where \s denotes the supremum of ordinals with a Ts-writable code of length §.

We further use these characterizations together with an analogue to Welch’s
submodel characterization of the ordinals A, ¢ and X, to show that § is closed
under the function o — X, where ¥, denotes the supremum of the ordinals
with a T,-accidentally writable code of length a.

1. INTRODUCTION

1.1. Motivation. The infinite time Turing machines introduced by Hamkins and
Kidder (see |]) are, roughly, Turing machines with a standard tape that run for
transfinite ordinal time. A motivation for studying these machines is the fact that
they model a class of functions that is closely related to the classes of ¥:1 and I} sets
in descriptive set theory. Moreover, several variations were studied soon after these
were introduced, for instance with an arbitrary ordinal as tape length |], or
an exponentially closed ordinal as tape length and time bound | ,].
More recently, the second author studied machines with an arbitrary ordinal as
tape length but no ordinal bounds on the running time []. These machines
are natural generalizations of infinite time Turing machines for tapes of length «
and are thus called a-ITTMs. They do not include ordinal parameters, which
are present in most other models |) ,]. It is easy to see that
the computability strength' can increase with «, though it remains the same with
relatively small increases of a. When « itself is not too large, increasing its size
necessarily makes the computational strength either the same or greater. However,
it turns out that for sufficiently large tapes, the machines’ computability strengths
are not always commensurable: there exist pairs of countable ordinals such that
two machines” with these tape lengths can each compute functions that the other
one can’t | , Proposition 2.9]. Thus a-ITTMs fail to be linearly ordered by

Date: February 15, 2018.
1Comput:&xbility strength in the present sense refers to the ability to compute functions f: 2% —
2% where « is the minimum of the tape lengths to be compared.
2In [], the term machine referred to the hardware consisting of a head and a tape with
specified length, together with a specified program p. The term device (or machine model) referred
1

2 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

computational strength. What is responsible for this phenomenon is that, in spite
of the lack of ordinal parameters, a machine can use its tape length o to perform
computations that rely on the exact size of a—an ability which, because of the
lack of parameters, can permit two differently sized machines to exploit their tape
lengths in ways the other cannot. This phenomenon clearly does not occur for
models with ordinal parameters included (as in []), since one can then always
simulate a shorter tape on a longer one (c.f. | , Proposition 2.1]). This is
because one can easily move the head up to cell x and halt there whenever one
is allowed to mark the xth cell, as is possible when computing with parameter y.
Indeed, it is straightforward to see that an ordinal parameter y < « is equivalent
to an oracle that allows a machine 7T, to emulate the computational behavior of
smaller machine T,

In the present article, we are mainly interested in the writability strength of a-
ITTMs without parameters, i.e., in the set of possible outputs of such a machine at
the time when it halts. One of the tools in | | to help classify the machines in
question is the connection between computability strength and ordinals a such that
T,, cannot reach® all of its cells. In particular, the least ordinal ¢ such that the com-
putability strength of Ty is incomparable with that of some machine with a shorter
tape is equal to the least ordinal ¢ such that T does not reach all of its cells | ,
Proposition 2.1]. The main question left open was the size of . We answer this
question by giving various characterizations of § via constructible set theory. The
characterizations resemble fine-structural properties of the constructible universe L,
where first-order definability is replaced with infinite time writability. To state the
next result, let A, denote the supremum of ordinals with a code of length « that
is writable by an a-ITTM with ordinal parameters. We will prove the following in
Section 2.3.

Theorem 1.1. ° § is equal to the least ordinal pu that is a reqular cardinal in L;\H.

We will further use the characterization in Theorem 1.1 and its variants to show
in Section 2.4 that § is least such that for some « < §, the writability strength of
T for reals strictly decreases in comparison with the machines T}, for o < x < 9.

Theorem 1.2. % § is least such that for some o < 6, there is some Tn-writable
subset of w that is not Ts-writable.

By the elementary submodel characterization of A, ¢ and X (c.f. | , Theorem
30 & Corollary 32]), this implies that 0 is larger than these ordinals, since we can
obtain triples that satisfy the characterization by forming countable elementary
substructures of Ls in Ly . We will use a variant of Welch’s characterization (see

Theorem 2.4) to extend this result in Section 2.5.

to the hardware alone without regard to any particular program (in other words, a class of ma-
chines). However, in the present paper we use machine for both these notions, trusting context for
clarity.

3An ordinal o is defined to be reachable by T, when there exists a program p such that T,
running p on empty input (input 6) halts with the final head position located at cell u.

4See the discussion after [, Proposition 2.9].
5

6

see Theorem 2.15
see Theorem 2.18

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 3

Theorem 1.3. 7 Yg <0 forall £ <6. 8

In the next section, we will give some background on a-ITTMs. The following
main section contains several auxiliary result about writable and clockable ordinals
as well as the proofs of the main results. We assume that the reader is familiar with
infinite time Turing machines and basic facts about Godel’s constructible universe.
Moreover, in the proof of Theorem 2.4, we will use Welch’s proof of the submodel
characterization of A\, ¢ and ¥ from | , Theorem 30 & Corollary 32].

1.2. The setting. We briefly introduce the main notions and results related to a-
ITTMs and refer the reader to | ,) | for details. We always
assume that the tape lengths « are closed under Godel pairing. An o-ITTM, which
we also call T, has three tapes of length « for input, working space and output
and each cell can contain 0 or 1. Programs for T, are just regular Turing machine
programs. Thus, the machine can process subsets of « by representing them on its
tapes via their characteristic functions, and we will freely identify subsets of a with
their characteristic functions. The input tape carries the subset of a that is given
to the machine at the start of the computation, while the results of a computation
are written on the output tape. The remaining tape is a work tape, and it is easy
to see that one can equivalently allow any finite number of such tapes, or in fact «
many if « is closed under Godel pairing. Moreover, each tape has a head for reading
and writing, all of which move independently of each other. Note that we could
equivalently use the model from | | with a single head, since this can simulate
our model.

The machine T, runs along an ordinal time axis. At successor times, the con-
figuration of the machine is obtained from the preceding one as usual for a Turing
machine with the extra convention that a head is reset to position 0 if it is moved
to the left from a limit position. At limit times, the content of each cell as well as
the head positions are determined as the inferior limits of the sequences of earlier
contents of that cell and earlier head positions; if for some head the inferior limit
of the sequence of earlier positions is «, then it is reset to 0. The machine can
compute relative to a finite parameter subset p of a by writing the characteristic
function of p to one of the work tapes before the computation starts. As we will
only be concerned with the case that « is closed under the Gédel pairing function
and the function’s restriction to « is easily seen to be computable by an a-ITTM,
we can assume that parameters are single ordinals below a.

We now turn to various notions of writability from []. A subset z of «
is called T,-writable if there is a T,-program P that halts with x on the output
tape when the initial input is empty, i.e., all cells contain 0. Moreover, x is called
eventually Ty -writable if there is a T,-program P such that the output tape will
have the contents z and never change again from some point on, if the initial input
is empty, although the contents of other tapes might change. Finally, x is called
accidentally T, -writable if there is an T,-program such that x appears as the content
of the output tape at some time of the computation with empty input. These
three notions of writability are different (see [, Theorem 3.8]). As for Turing
machines, there is a universal T, -program U, that simulates all computations on

see Theorem 2.22

8This strengthens the result from |] that ¢ < 6 and an unpublished result by Robert
Lubarsky that 3 < §, where ¢ and X respectively denote the suprema of eventually and accidentally
writable ordinals for ITTMs.

4 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

empty input. This can be obtained by dividing the work and output tapes into
infinitely many tapes of the same length. Thus every T,-accidentally writable real
is accidentally written by U,.

We also frequently consider T, -writable subsets x of some ordinal x < «. Naively,
we could just write x to the initial segment of length y of the output tape and leave
the rest empty, but then we could no longer distinguish between x as a subset of
x and as a subset of «. Therefore, we introduce the following notion. A subset x
of x is called T,-writable as a subset of x if there is a T,-program for empty input
that halts with the characteristic function of on the output tape and if x < «, the
head is on position x at the end of the computation. Similarly, we call x eventually
writable as a subset of x if the head on the output tape eventually stabilizes at
X- We can now compare the writability strength of these machines. We will say
that T, has strictly greater writability strength than T} with respect to subsets of
x < min{a, 5} if every Tg-writable subset of x is also T,-writable as a subset of x,
but not conversely.

We will further work with T,-writable codes for ordinals. Assuming that « is
closed under Godel pairing, an «a-code is a subset of « interpreted as a binary
relation on « via Godel pairing. This is isomorphic to a transitive set and the
coded set is the image of 0 in the transitive collapse. We thus call an ordinal T,-
writable, T, -eventually writable or Ty -accidentally writable if it has an a-code with
the corresponding property. °

2. CONNECTIONS BETWEEN WRITABILITY STRENGTH, REACHABILITY AND THE
CONSTRUCTIBLE UNIVERSE

2.1. Writable and clockable ordinals. The ordinals A\, ¢ and 3, which play an
important role in the study of infinite time Turing machines, have analogues for
a-tape machines. We define Aas Q, S, and Aas Cay 2o as the suprema of the T,-
writable, T,-eventually writable and T,-accidentally writable ordinals with respect
to a-codes with and without ordinal parameters. The next lemma shows that any

T,-program that does not halt on input 0 runs into a loop between Ca and Za, as
for standard I'TTMs.

Lemma 2.1. On input 0, any Th-program with ordinal parameters either halts
before time A, or runs into a forever repeating loop in which the configuration at
time (, is the same as that of time X.

Proof. We refer the reader to the proof of this fact for ITTMs | , Theorem
1.1] and only sketch the changes that are necessary to adapt it to a-IT TMS Since
ordinal parameters are allowed in the definitions of)\a, Ca and Ea, it is sufficient to
prove that the limit behaviour in each cell is the same when the time approaches Ca
and 3,. This means that if the contents of the x-th cell converges when the time
appoaches Ca, then it converges to the same value at 3, and otherwise it diverges
at 3o. The difference to the setting of I'TTMs is that here the head doesn’t move
to the first cell at every limit time. We want to show that for any computation of
T, the head position at time éa is equal to the head position at time S To adapt
the proof, we define a program that simulates the given machine, and writes the

9 Note that the present terminology differs from that of |], in which Tu-writability and
T -eventual writability referred to w-length binary output sequences (as in []), and w-codes
rather than a-codes represented ordinals (and only countable ordinals were considered). Results
from there need not hold for the current sense of T -writability, Tn-eventual writability, etc.

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 5

current head position on an additional tape by writing 1 in every cell that precedes
the head position and 0 everywhere else. At every limit time, the lim inf of the head
positions is calculated and the remaining contents of the tape are deleted. Now the
proof for ITTMs shows that the tape contents for the simulation are identical at
the times Ca and 3, and thus the head positions are also equal for the original
program. U

The fact that the suprema of writable and clockable ordinals are equal | ,
Theorem 1.1] easily generalizes as follows to the setting with ordinal parameters.

Theorem 2.2.)\, is equal to the supremum of the ordinals that are T,-clockable
with ordinal parameters below .

Proof. We give a quick sketch for the reader and again refer to the proof of | ,
Theorem 1.1] for details. To see that each T,-writable ordinal is majorized by some
T,-clockable ordinal, consider the program that first writes an a-code for the ordi-
nal and then counts through the code by successively deleting the next remaining
element. For the reverse implication, Lemma 2.1 implies that any program that
does not halt before (, will run forever. Given a halting program P, we consider
each eventually writable ordinal by successively writing its versions y and running
P up to time x. Every time x changes, we begin a new simulation of P and as soon
as P halts, we output an a-code for x. It follows that y is T,-writable and that the
halting time of P is below M. O

In the following, we will need the fact that A\, is admissible and éa is Yo-
admissible, i.e., every total Yo-definable function on a set in Léa is itself an element
of L:

Ca

Lemma 2.3.)\, is admissible and fa 18 Yo-admissible for all a.

Proof. The proof is essentially the same as that of admissibility of A | , Corol-
lary 8.2]. We give a sketch for the reader. Otherwise there is an ordinal y that is
T,-writable with parameters and a cofinal function f : y — A, that is X;-definable
over Ly,. We now consider a Ti-program that first computes a code for x and
then runs the universal T,-program U,. Whenever this produces a code for an
L-level, we mark all ordinals 8 < x such that f(5) is defined over this level. We
stop when all ordinals below x are marked. The computation halts after at least
Ao many steps, but this contradicts Theorem 2.5. The proof of Ys-admissibility of
(. is similar and we refer the reader to | , Lemma 31] for the details. O

We will also use a version of the submodel characterisation of A\, (and X.

Theorem 2.4. The triple (S\a, Cos f)a) is lezicographically least with o < Mg < Ca <
Yo and L;\a <y, Lfa <3, Lia m any order.

Proof. The proof from [| for the case @ = w to show that (A, (,X) is lexi-
cographically least with this property adapts to this more general statement. We
briefly discuss the crucial role of the parameters. In Welch’s proof, the distinc-
tion between computations with and without parameters is not visible, as finite
parameters are always writable.

First, to show that the content of a tape cell stabilizes at time fa if and only if it
stabilizes at time ia, it is necessary to let the machine check the evolution of the
contents of each cell separately for each cell as in Lemma 2.1. This is clearly possible

6 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

for the x-th cell if y is given as a parameter. Second, it is frequently needed that
any element x of a set y with a T,-writable code has itself a T,,-writable code. This
need not be true for a-tape machines without parameters, as x might correspond
in the code for y by an ordinal that is not T,-reachable. However, this clearly
holds with parameters and an analogous statement holds for eventually writable
sets. Finally, for our machines the read-write-heads are no longer reset to 0 at all
limit times, which is used in the w-case to show that the snapshots at times ¢ and
> agree. But this issue has already been dealt with in the proof of Lemma 2.1.
We can further see that the triple remains lexicographically least in any other
permutation of its order. We first claim that there is no triple (X, (’,¥’) with the
submodel property and ¥/ < Sa. Since Ls <w, Ly, otherwise there is such a
triple in Ly, but this contradicts the minimality in any order. Moreover, there is
no such triple (X, ¢/, ¥') with ¢’ < ¢, since a proper Yo-elementary submodel of L¢
would contain all eventually writable subsets of «, and similarly L S has no proper
Y1-elementary submodels, as these would contain all writable subsets of «. (]

We will further need the next version of Theorem 2.2 without parameters.

Theorem 2.5. The ordinal A\, is equal to the supremum of the Ty -clockable ordi-
nals.

Proof. We first claim that Aa < Co- To see this, we simulate all programs P
simultaneously for all parameters below a. When a copy of P halts, we save its
output if it is a code for an ordinal and discard it otherwise. At any time, we
output a code for the sum of all such ordinals. This eventually writes an ordinal
above all writable ordinals with parameters below «. To see conversely that every
T,-clockable ordinal u is below A, note that it is below Ao by Theorem 2.2 and
hence below (,. We fix a program P whose halting time is ¢ and a program @) that
eventually writes an ordinal above u. For each ordinal v that is output by Q, we
simulate P up to time v and output v if P halts. Hence p < v and v is writable. [

The previous lemma suggests the question whether the versions of A\, (, and X,
with and without parameters are equal. It is easy to see that >, = ﬁ)a, since any
a-code that is accidentally writable with a parameter below « can also be written
by simulating the same program with all possible parameters. However, we now
show that this is not the case for A\, and (,. To this end, we consider countable

L
ordinals o with w; %o — o such as the least ordinal « that is uncountable in L

An example for an ordinal with the latter property is the image 7(w;) of w; in the
collapsing map 7: h§ ({wi}) — M.

L “ .
Theorem 2.6. If w,** = a, then Ay < Ao and (y < Co.

Proof. For A\,, we consider the set S of programs that halt with parameter o and
output an a-code for an ordinal. The set S is definable over L;\a and hence an
element of Ly, . It is easy to see that Ly <y, Ly, , since one can go through all
accidentally ertable codes for L-levels and output “this as soon as witness for the
Y1-statement is found. Our choice of o implies that « is uncountable in Lg, . Thus
x € L, by condensation and hence there is some xy < « such that S is the x-th
element in the canonical well-order of L. The 31-Skolem hull H = hy, X‘* ({a}) of {a}
in Ly is equal to the set of all elements of Ls that are 3J;- deﬁnable over L; inthe
parameter a. Since S is Yi-definable from ¥, “there is a surjection f: w — H that is

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 7

¥1-definable over L3 from y. Moreover, it is easy to see that Ay = sup(H N Ord).

Since 5\@ is admissible by Lemma 2.3, we have A\, < 5\@.

For (,, let p(n,x) be a Yg-formula such that the Xs-formulas with the free
variable z are exactly the formulas of the form ¢(n,z) for some n € w up to
equivalence in every Yg-admissible set. Let further ¢ (n,x) be a Xo-formula that
uniformizes ¢(n,) over L | , Theorem 3.1] and S = {n € w | Iz p(n,z)}

its projection. Since Ly <y, L;_, by Theorem 2.4, the So-hull H = hy* ({a}) of
{a} in L is equal to the range of 1. Using the fact that « is uncountable in L

we find some X < «a such that S is the x-th element in the canonical well- order
of L. Since S is Yi-definable from x and % is a Yo-formula, there is a surjection
f:w — H that is Yo-definable over Lfa from y. Since it is easy to show that

(o = sup(H N Ord) and éa is Yg-admissible by Lemma 2.3, we have (, < fa. O

Moreover, we will frequently use that for any o with a Tg-writable x-code, where
X is closed under Godel pairing, L, also has a Tg-writable x-code. To see this, one
partitions x into x many pieces of length x and successively writes x-codes for L
onto the &-th piece for all £ < x to finally construct a single x-code for L,. Thus
any subset of o in Ly is contained in a set with a Tj,-writable a-code, assuming
that « is closed under Godel pairing. For the converse, take any set x with a T,-
writable a-code, which we can assume to be transitive. Now consider a program
that iteratively identifies elements of the same €-rank. Its output is an a-code for
an ordinal B with x € Lg and hence x € L.

2.2. L-levels. In this section, we give various characterizations of § by connecting
properties of levels of the constructible universe with writability strength.

Definition 2.7. (a) Let u, be least such that there is no surjection f: x — py
in L)wx'

(b) Let p< be least such that there is no surjection f: x — py in Ly,_ for any
X < p<-

We will further omit the subscript x when xy = w. It follows from the next
observation that these ordinals are well-defined.

Observation 2.8. For any uncountable cardinal k, the set of a < k such that there
s no surjection f: x — a in Ly, for any x < a is unbounded in k.

Proof. 1t is sufficient to prove this for uncountable regular cardinals k. To see that
there is such an ordinal above any x < k, let 7: hEehr (x +1) — Lg be the
transitive collapse and o = (k). Since 7 is elementary, « is a cardinal in Lg and
hence it has the required property. O

On the other hand, the next result shows that many ordinals don’t satisfy the
condition in the previous observation.

Observation 2.9. For any uncountable cardinal k, the set of o < k such that there
s a surjection f: x — a in Ly, for some x < « contains intervals of arbitrarily
large length below k.

Proof. We use the fact that there are arbitrarily large xy < & such that a new
subset of some { < x appears in L,41. Since the L-hierarchy is acceptable [,
Theorem 1] (see | , Definition 1.20] for the definition), some surjection f: & — x
is definable over L,. We work with the ordinal a@ = wX, which is closed under Godel

8 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

pairing, and obtain a surjection g: & — « that is definable over L, for some & < x.
We can find a T,,-writable £-code for « for some £ < a by first writing an a-code for
L1 and then searching for the required {-code. Moreover, Tz can write an a-code
for g for any B € [, + @), since « is the largest power of w below 5. Hence all
ordinals in the interval [a, & + «) have the required property. (]

Lemma 2.10. For each of the following objects, the ordinal u, is the least one for
which this doesn’t exist.

(a) A surjection f: x — py in Ly,

(b) The same as (a), but for ijx'

)
(c) A py-code for a surjection f: x — py that is T, -writable from x.
(d) The same as (c), but with finitely many additional ordinal parameters below
Hox-

Proof. The first condition simply restates the definition of u,. We first show that
fty is equal to the ordinal defined by (c). Note that there is no p,-code as in (c),
since any such surjection would be an element of LMX by Theorem 2.5. To see
that s, is least with the property in (c), suppose that n < p, and f: x — 7 is
a surjection in Ly, . We now simulate all T;-programs and whenever one of them
writes an 7n-code for Lg for some 8 < \;,, we check whether this contains such a
surjection f and in this case output an n-code for f. Moreover, the proof of the
equivalence of the conditions defined by (b) and (d) is virtually the same.

It remains to show that the conditions given by (c¢) and (d) are equivalent. To
this end, suppose that there is an a-code for a surjection f: xy — « that is T,-
writable from x and additional parameters below «. It suffices to write such a code
without additional parameters. This can be done by simulating the program for all
parameter tuples of the appropriate length simultaneously and halting as soon as
one of them writes an a-code for a surjection f: x — a. O

Since A\, < 5\@ is possible by Theorem 2.6, the equivalence between the conditions
given by (a) and (b) in the previous lemma is not immediate. We further obtain
the next equivalence by virtually the same proof as that of Lemma 2.10.

Lemma 2.11. For each of the following objects, the ordinal < is the least one
where this doesn’t exist.

(a) A surjection f: x — p< in Ly,_ for some x < p<.
(b) The same as (a), but for L;\u<'
(c) A py-code for a surjection f: x — pu< that is T,,_-writable from x for some
X < p<-
(d) The same as (c¢), but with additional ordinal parameters below ji<.
Note that pu< is least such that u. is a regular cardinal in L P The next lemma
shows that the ordinals considered in Lemmas 2.10 and 2.11 are in fact equal.

Lemma 2.12. p, = <.

Proof. Since p, < p< is clear, we assume towards a contradiction that p, < p<.
Then there is some x < p, and a surjection f: x — p in Ly, . We now simulate
all T}, -programs and search for such a surjection in every p,,-code that is produced
in the simulation. As soon as a code for a function f: xy — u, appears, we search
for a T,-writable code for a surjection g: w — x. It is now easy to obtain a T}, -
writable p,-code for the surjection f o g: w — p, and this would contradict the
definition of py,. O

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 9

We can also obtain different characterizations of pu, and p. by replacing the
surjections in Definition 2.7 by cofinal functions as follows.

Definition 2.13. (a) Let v, be least such that there is no cofinal f: x — v, in
Ly, .
vx

(b) Let v< be least such that there is no cofinal f: x — v< in L, _ for any x < v<.

Virtually the same proofs as in Lemmas 2.10, 2.11 and 2.12 yield analogous
equivalences as above. Using this, we obtain that all ordinals that we just considered
are equal.

Lemma 2.14. p, = v,.

Proof. Since it is clear that u, < v,, we assume towards a contradiction that
Hew < Vy. Then there is a T}, -writable w-code for a cofinal function f: w — py,.
Moreover, there are T,-writable w-codes for surjections f,: w — «a for all a < p,,
since we assume that p,, < v,. We can now find a T, -writable w-code for p,, by
first writing an w-code for f and then producing the required code from w-codes
for f(n) for all n € w, but this contradicts the definition of p,,. O

Hence p = v is least with either of the properties (a) p is uncountable in L;\u or
(b) p is regular in LX#

2.3. Reachable cells. We can now give a characterization of § with the help of
the results in the previous section.

Theorem 2.15. § =

Proof. To show that 6 < p, it suffices to show that T}, doesn’t reach all its cells.
We thus assume otherwise. Then there is a well-defined map f: g — Ord that
sends a < p to the least halting time of a program that halts in the a-th cell.
Since the halting times are bounded by A, by Theorem 2.5 and A, < 5\a, this

map is Yj-definable over Lj . Since)\, is admissible by Lemma 2.3, ran(f) is
bounded by some T, ertable ordinal x. We consider the following 7},-computable
function g: w — x. If the n-th program halts before time y, let g(n) be its halting
position and otherwise g(n) = 0. We have cof(u) = w in Lj ,» since this function
is an element of LM’ but this contradicts the fact that u 1s regular in L;\M as a
consequence of Lemma 2.14. Finally, we have u < 4, since T, can write an w-code

for o for any o < p and hence it can reach all its cells by counting through the
code. (]

It is natural to ask whether we can define § via a notion of eventual reacha-
bility. We will call a cell eventually T,-reachable if the head on the output tape
eventually stabilizes on this cell. The next result shows that this leads to another
characterization of §.

Lemma 2.16. The ordinal § is least such that not every cell is eventually reachable.

Proof. Since every cell of T, is T,-reachable for all a < §, it is also eventually
reachable. Now suppose towards a contradiction that every cell of Ty is eventually
reachable. We partition the tapes into § many portions of length §. For each cell
X, we work in the x-th portions and enumerate x-candidates (n,«) that consist
of a natural number and an ordinal by accidentally writing them with Us. While
the current y-candidate is considered, we pause Us and run the n-th program on

10 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

the x-th portions of the tapes as long as the position of the head on the output
tape is stable at the y-th cell from time a onwards, with a code for n on the
output tape. Omnce the head moves, we run Us for the next step and switch to
the next y-candidate. If the n-th program stabilizes at all, then it does so at or
before some accidentally writable ordinal, since the sequence of positions of the
head on the output tape runs into a loop by time 65 by Lemma 2.1 and the fact
that CA(; < 35 = 5. The program eventually writes an output from which we can
read off an injective function f: & — w. Since this is an element of L@s’ 0 has
cofinality w in Lfa and also in Ls _, since it is easy to see that Ly <, Lia' But
this contradicts Lemma 2.14 and Theorem 2.15. O

It is easy to see that ¢ is least such that the Ts-reachable cells are bounded. In
fact they form an interval, since Ty can simulate T, if o < 0 is Tg-reachable, but
T, reaches all its cells and hence T reaches all cells below «. However, this is not
true in general by the next observation.

Observation 2.17. There are arbitarily large ordinals o such that T, can reach
unboundedly many cells, but not all of them.

Proof. We will show that for any limit ordinal x and any n < w, the (x + n)-th
cell is T\ 4. -reachable. The claim follows since there are arbitarily large ordinals

x with y = wlLAX. It is sufficient to show that the x-th cell is reachable. To this
end, we write a string of 1s such that an additional 1 is added at the end of the
string in each step and the head then moves w many cells to the right. Note that
it is possible to determine whether the time is a limit with the help of an extra
work tape. Reading a 0 afterwards means that we did not reach the x-th cell in
the previous step; we thus move the head to the right until we jump back to the
first cell, which is detected by reading 1, and go to the next loop. On the other
hand, reading a 1 means that we had previously reached the y-th cell, which is now
marked by the last 1; we can move the head to the last 1 and halt. U

2.4. Writability strength.

Theorem 2.18. For each of the following sets, the ordinal § is the least such that
this exists for some o < 9.

(a) A Ty-writable but not Ts-writable subset of w.
(b) The same as in (a), but for a subset of .

Proof. Since T, reaches all its cells for all o < 6, it can simulate 7', for all smaller x.
Thus it is sufficient to show that there is a T,-writable but not Ts-writable subset
of w for some o < 4. Assuming otherwise, T,, can write an w-code for « for all
a < 6 by Theorem 2.15 and the previous results. Hence Ty could do the same, but
this would imply that it can reach all its cells. O

Thus the writability strength can decrease with an increase of the tape length.
The next result shows that the writability strength with respect to subsets of w is
always comparable. However, this does not hold for subsets of arbitrary ordinals
for tapes with non-reachable cells.

Theorem 2.19. For every «, there is an ordinal xo < Ao such that the T, -writable

reals are exactly those contained in L, . Hence T,, and Tg are comparable in their
writability strength for subsets of w.

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 11

Proof. Every T,-writable real number is contained in Ly, by Lemma 2.3. We claim
that every T,-writable real x is contained in some Lg with a T,-writable w-code.
If 3 is least with € Lg, then Lg has a real code in Lg4q by acceptability of the
L-hierarchy. Hence such a code is T,-accidentally writable without parameters and
we can run the universal program U, to search for an w-code of an L-level that
contains x. Eventually, such an w-code for some L, is written on the output tape
and the machine stops. It remains to see that every real in some L, with a T|-
writable w-code y for L, is itself T,,-writable, but this is clear since each element of
L, is coded in y by a natural number. U

We now turn to characterizations of § via eventually and accidentally writable
sets. The next result follows from Lemma 2.10 and the fact that every accidentally
T,-writable subset of « is an element of Ly, by Lemma 2.1.

Lemma 2.20. § is least such that each of the following objects doesn’t exist.

(a) An eventually Ts-writable x-code of § for some x < 9.
(b) The same as in (a), but with x = w.

(¢) An accidentally Ts-writable x-code of 6 for some x < 9.
(d) The same as in (c), but with x = w.

For standard I'TTMs there are no gaps in the writable ordinals since from a
code for an ordinal one can write a code for any smaller ordinal by simply truncat-
ing the code | , Theorem 3.7]. However, for d-codes truncating would require
addressing every tape cell, which is not possible when there are non-reachable cells.

Lemma 2.21. § is least such that the Ts-writable ordinals have a gap.

Proof. There are no gaps in the T,-writable ordinals for o < 9§, since every cell is
reachable and hence codes can be truncated at any length. We now show that [y, d)
is the first gap for Ty, where y is the least cell that is no Ts-reachable. To see this,
note that it follows from the equality 6 = p in Theorem 2.15 that every reachable
a has a Ts-writable w-code and it is also clear that § has a Ts-writable §-code. If
some « € [x,0) had a Ts-writable d-code, then one would be able to reach « by
counting through the code, but this contradicts the choice of x. O

2.5. Upper and lower bounds. We obtain an upper bound for ¢ by considering
the least ordinal o such that the same X;-statements are true in L, and L. '© The
function mapping « to A, is ¥1-definable, since A, can be calculated in any model
of sufficiently large fragments of ZFC that contains « by testing which programs
halt and which run into an infinite loop. Thus § < ¢ by the definition of § and
Theorem 2.5.
Flnally, it is useful to understand the properties of the functions mapping a to
Aas Aas Cas Ca and X,. It is clear that A\, = /\ and A\, < Ag for a < 8 < 0, since
Ty can simulate T,,. Moreover, it turns out that J is a closure point of the function
mapping « to ,. This gives us lower bounds for §.

Theorem 2.22. ¢ < for all § < 0. H

10Note that the 31-hull H of the empty set in L is transitive and hence H = L,. Otherwise let
X € H be the least ordinal with x Z H and ¢(z) a ¥1-formula such that x is the unique element
of L that satisfies . If m: H — H is the collapsing map, then 7m(x) < x satisfies ¢ in H and hence
in L, contradicting the fact that x is unique.

Hrpig strengthens the result from [] that ¢ < § and an unpublished result by Robert
Lubarsky that 3 < §, where ¢ and X respectively denote the suprema of eventually and accidentally
writable ordinals for ITTMs.

12 MERLIN CARL, BENJAMIN RIN, AND PHILIPP SCHLICHT

Proof. We have § = v by Lemma 2.14, Theorem 2.15 and the discussion after
Definition 2.13. Therefore ¢ is a regular cardinal in the admissible set L . Hence

there is a strictly increasing sequence (x, | @ <) of ordinals x with £ < x < ¢
such that (Ly, | & < 4) is a chain of elementary substructures of Ls in Ly . In

particular, Ly, <s, Ly, <5, Ly,. Since the triple (¥, (s, Ag) is lexicographically
least with this property by Theorem 2.4, we have ¥, < xo < 4. O

3. OPEN QUESTIONS

We conclude with several open questions. Firstly, we ask whether some of the
properties above that occur at d for the first time, are also equivalent above 4.

Question 3.1. Which of the conditions in Lemmas 2.10 and 2.11 and Theorem
2.18 are equivalent for all ordinals?

Secondly, the functions mapping « to A, 5\&, Cas éa and X, are not well under-
stood. For instance, they are monotone up to § by Theorem 2.22, but it is open
whether this holds in general.

Question 3.2. Are the functions mapping a to A, 5\0“ Cas fa and X, monotone?

Moreover, we showed in Theorem 2.6 that A\, < 5\@ and (, < éa hold for some
«, but we don’t know precisely for which ordinals.

Question 3.3. Can the ordinals o for which Ao < Ao and Co < Co hold be charac-
terized by properties of L-levels?

Finally, we ask whether similar results to those in this paper hold for machines
with ¥,-limit rules [].

REFERENCES

[BP68] George Boolos and Hilary Putnam. Degrees of unsolvability of constructible sets of integers.
J. Symbolic Logic, 33:497-513, 1968.

[COW] Merlin Carl, Sabrina Ouazzini, and Philip Welch. Taming Koepke’s Zoo. In preparation.

[FW11] Sy-David Friedman and Philip Welch. Hypermachines. J. Symbolic Logic, 76(2):620-636,
2011.

[HLOO] Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic Logic,
65(2):567-604, 2000.

[Jen72] R. Bjorn Jensen. The fine structure of the constructible hierarchy. Ann. Math. Logic,

4:229-308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver.

Peter Koepke. Turing computations on ordinals. Bull. Symbolic Logic, 11(3):377-397, 2005.

Peter Koepke. Ordinal computability. In Mathematical theory and computational practice,

volume 5635 of Lecture Notes in Comput. Sci., pages 280—-289. Springer, Berlin, 2009.

[KS09] Peter Koepke and Benjamin Seyfferth. Ordinal machines and admissible recursion theory.
Ann. Pure Appl. Logic, 160:310-318, 2009.

[Rin14] Benjamin Rin. The computational strengths of a-tape infinite time Turing machines. Ann.
Pure Appl. Logic, 165(9):1501-1511, 2014.

[SZ10] Ralf Schindler and Martin Zeman. Fine structure. In Handbook of set theory. Vols. 1, 2,
8, pages 605—656. Springer, Dordrecht, 2010.

[Wel00] P. D. Welch. The length of infinite time Turing machine computations. Bull. London Math.
Soc., 32(2):129-136, 2000.

[Wel09] P. D. Welch. Characteristics of discrete transfinite time Turing machine models: halting
times, stabilization times, and normal form theorems. Theoret. Comput. Sci., 410(4-5):426—
442, 2009.

[Koe05
[Koe09

WRITABILITY STRENGTH OF INFINITE TIME TURING MACHINES 13

MERLIN CARL, FACHBEREICH MATHEMATIK UND STATISTIK, UNIVERSITY OF KONSTANZ, 78457
KONSTANZ, GERMANY
E-mail address: merlin.carl@uni-konstanz.de

BENJAMIN RIN, DEPARTEMENT FILOSOFIE EN RELIGIEWETENSCHAP, UTRECHT UNIVERSITY,
JANSKERKHOF 13, 3512 BL, UTRECHT, THE NETHERLANDS
E-mail address: b.g.rinGuu.nl

PHILIPP SCHLICHT, DEPARTMENT OF COMPUTER SCIENCE, THE UNIVERSITY OF AUCKLAND,
PRIVATE BAG 92019, AUCKLAND 1142, NEW ZEALAND
E-mail address: schlicht@math.uni-bonn.de

	1. Introduction
	1.1. Motivation
	1.2. The setting

	2. Connections between writability strength, reachability and the constructible universe
	2.1. Writable and clockable ordinals
	2.2. L-levels
	2.3. Reachable cells
	2.4. Writability strength
	2.5. Upper and lower bounds

	3. Open questions
	References

